
Basic course:

Introduction to Linux for HPC

• 1) Overview of HPC: (30 min)

• 2) Linux (60 min)

• break (30 min)

• 3) Transferring files (20 min)

• 4) Submitting jobs (40 min)

Module 1: What is HPC?

30 minutes

What is HPC?

• HPC is the aggregation of computing resources.

• Cores (cpus / chips / sockets)

• RAM

• Disk

• Interconnect

What HPC isn’t

• Linux, not Windows.

• Windows software not always available.

• No GUI, point and click.

• Generalized command line approach, not dedicated to a package.

• HPC is not supercomputing.

Architecture

• Operating system: Centos Linux

• X86_64

• HPC server: hpc.uct.ac.za

• Scheduler: SLURM

• Worker nodes:
• Dell C6420 40 core nodes

• Dell C4140 GPU servers

• Dell C6145 64 core nodes

• Supermicro GPU servers

Architecture

Shared file system

• The head node and worker nodes all have hard drives,
however…

• Each server is connected to several shared disks:
• /home
• /opt/exp_soft
• /scratch

• If you delete /home/$user/mydata on a worker node it will
be deleted on the head node!

The dashboard
• To keep track of the workload and the jobs that are running on

the cluster go to: http://hpc.uct.ac.za/db

The dashboard

The dashboard

The dashboard

Module 2: Linux

60 minutes

What is a Shell?
• The shell is a command line interpreter or shell that provides

an interface to the Linux operating system.

• A shell has a single purpose – to allow users to enter
commands to execute, or create scripts containing
commands, to direct the operation of the computer.

• Various types of shells available for your preference, examples
“ csh, ksh, bash, zsh, pdsh, tcsh …. the list goes on “

Slide 13

Install software

Use your web browser to download Putty and PuttySCP from:
http://www.putty.org

• Click on the “Download Putty” link and download:

• putty.exe (a Telnet and SSH client)

• pscp.exe (an SCP client, i.e. command-line secure file
copy)

• WinSCP (GUI-BASED SCP)

• Double click to install on your PC.

Slide 14

Logging On
• Start the putty telnet/ssh client by double clicking on

putty.exe and connect to the HPC Machine

• Host: hpc.uct.ac.za

• Connection Type: ssh

• Port: 22

Slide 15

Log On to the HPC Machine
• Log into the training HPC system using the Test Account

allocated to you, e.g.

• Account Name: hpc01

• Password: [no characters will appear as you type]

Slide 16

What does BASH do?

• The shell (command line interpreter) interprets the commands
entered by the user and passes those to the Linux operating
system.

• When you enter a command and hit return

• BASH parses the command line into tokens

• 1st token is interpreted as the command

• Remaining tokens are interpreted as arguments

Slide 17

Anatomy of a command

• Commands comprise of:

• a command that invokes a program

• arguments to that program

hpc01@srvcnthpc001:~> cmd arg1 arg2 arg3

hpc01@srvcnthpc001:~> cmd arg1 arg2 arg3 “arg 4”

command Arguments (3)command prompt

Arguments (4)command

Slide 18

Commands and Shells

• Commands allow users to interact with the operating system
via the shell

• Two-way communication is possible between the shell and
commands

• e.g. the ls command will return a list of files in a directory

Slide 19

Exercise 1(a)
Running Commands

Slide 20

Command Description

ls Shows a directory listing

w Shows who is logged on to the system and what they are doing

w hpc01 Shows login, idle time and what user hpc01 is doing

date Prints the system time and date

uptime Tells you how long the system has been running

Command Line Options (Flags)

• Command Line Options / Flags modify the operation of
the command.

• There are two forms of flags – Short Form & Long
Form.

• Flags are case sensitive!

• Short form options start with a single hyphen “-”

• rm –f <filename> ���� force removal of file

• Long form Options start with a double hyphen “--”

• rm –-force <filename> ���� force removal of file

Both commands do the exact same thing!

Slide 21

More Commands & Flags

• ls –l

•short form flag “-l”

• Shows the long format listing for all files in
the directory

Slide 22

Command Line Arguments
• Command Line Parameters are arguments sent to the

program being called.

• There are two forms of parameters – Short Form & Long
Form.

• Parameters are case sensitive!

• Long form Options start with a double hyphen “--”

./configure --prefix=path1/dir_install ����

Default argument would be passed if nothing was specified
“/usr/local”

Slide 23

Exercise 1(b)
Flags and Parameters

Slide 24

Command Description

ls Shows a directory listing

ls -l
(long) Lists directory contents of current
directory using long listing format

ls -a
ls --all

(all) Lists directory contents of current
directory and does not ignore entries starting
with .

ls -la
ls -all -l

(all+long) Lists directory contents of current
directory using long listing format and does
not ignore entries starting with .

ls --format=horizontal
Lists directory contents of current directory
horizontally

The online manual

• man is a command that takes as its argument the name of

another command.

NAME

find - search for files in a directory

hierarchy

SYNOPSIS

find [-H] [-L] [-P] [path...] [expression]

• The [] indicate an optional argument (you don’t type these)

Slide 25

Directories

• Called ‘folders’ under windows

• Exactly the same concept in Linux

• You run into them a LOT more under Linux than you do under
windows

• A filesystem directory is a container

• It can contain files and other directories

Slide 26

/

ac3

bin

etc

usr

home

hpc01

hpc02

hpc03

hpc21

/home/hpc01

/home/hpc02

/home/hpc03

/home/hpc21

What are the names of the

contents of the directory called
/home?

Slide 27

/

ac3

bin

etc

usr

home

hpc01

hpc03

/home/hpc02/example.sh

hpc02

example.sh

hpc21

example.sh

Where do I start from? Path components

Path separator

Slide 28

Rules So Far

• There is one root, called “/”

• This is different from windows, where there is one root for
each disk drive C:, D:, etc

• A path from the root designates exactly one file: such a path
is called an “absolute path”

Slide 29

The Home Directory

• Each account (user) has a special home directory

• That’s where you ‘get put’ when you log in. (More on this
later)

• BASH uses the “~” character to indicate “home directory”

• Two forms

• ~ “my home directory”

• ~hpc01 “hpc01’s home directory”

Slide 30

/

ac3

bin

etc

usr

home

hpc01

hpc03

hpc02

example.sh

hpc21

example.sh

~hpc02/example.sh

Path components

Path separator

Where do I start?

Slide 31

Rules So Far

• There is one root, called “/”

• A path starting with “/” means “from the root”

• A path starting with “~” means “from the home”

Slide 32

Exercise 2(a)
Finding your way around

Command Description

cd Change the working directory to your home directory

cd <path> Change directory to <path>

ls List the contents of the working directory

ls <path> List the contents of <path>

Slide 33

Looking upwards

• UNIX uses “..” to denote the parent of a directory. You can
use this when running commands, e.g.

• cd .. � change up 1 directory

• cd ../hpc01� change up 1 directory, then down 1

directory to hpc01

• UNIX understands “..” as a “normal directory” and it can
appear in a path

Slide 34

~

experiments

step1

experiment1

step2

description

file1

file2

file1

experiment2

description

step1

file1

file2

step2

file1

../experiment2/step1/file1

Path components

Path separator

Where do I start?
Slide 35

Making New Directories

• By default you can create only one directory at a time:

mkdir </path/new_directory>

mkdir </path/to/new/directory>

Slide 36

What happens when you execute the commands?

mkdir ~/experiments

cd ~/experiments

mkdir experiment1

mkdir experiment1/step1

mkdir experiment1/step2

mkdir experiment2/step1

• Did the above command work?

mkdir -p experiment2/step1

cd experiment2

mkdir step2

tree ~/experiments

~

experiment1

step2

step1

experiment2

experiments

step1

step2

Slide 37

Exercise 2(c)
Making Directories

Command Description

mkdir <path> Make a directory at <path>

pwd Print the name of the current working directory

cd <path> Change directory to <path>

ls <path> List the contents of <path>

~

experiment1

step2

step1

experiment2

experiments

step1

step2Slide 38

Creating/Moving/Copying Files
Around
• Files live in exactly one location

• Files can be copied and moved between directories

• Files can be created by using the “ touch “ command

cp <from path/file> <to path/file>

mv <from path/file> <to path/file>

touch <path/file>

Slide 39

~

experiments

step1

experiment1

step1

description

file1

file2

file1

experiment2

description

step1

file one

file two

step2

file one

What happens when you execute the commands?

cd experiment1

cp step1/file1 ../experiment2/step1

cp ../experiment2/description ../.

other

cd ../experiment2/step1

mv file1 ../step2

cd ~/experiments

tree experiment1 experiment2

cp experiment1/description experiment2

Slide 40

touch experiment1/description

cd ~/experiments

touch step1/file1 step1/file2

Exercise 2(d)
Moving and Copying Files

Command Description

cp <from> <to> Copy a file from <from> to <to>

mv <from> <to> Copy a file from <from> to <to> then remove <from>

man cp
man mv

Print the online manual entry for <command name>.
What happens when you provide more than two
arguments to cp and mv?

Slide 41

Editing files

• Invoke with:

• Use the arrow keys to navigate your document

• Update the text by typing, backspace, etc.

• Use Control+O to save the file (^O).

• Use Control+X to quit (^X).

nano <file_name.txt>

Slide 42

Exercise 4(a)
Editing a file in-situ

Command Description

nano <file> Will open file <file> in a text file editor

CTRL+O Using CTRL+O within the nano editor will cause any
changes made to the file while editing to be saved to the
file

CTRL+X Using CTRL+X within the nano editor will cause the
editor to close. If you have not already saved your
changes you will be asked if you wish to save those
changes by answering Y or N

Slide 43

Break : 30 min

Module 3 : Transferring files

Slide 45

20 minutes

• Secure Copy (scp) is another way to
transfer files to and from the HPC

scp

WinSCP

• WinSCP is a graphical Windows based tool that can move data between
your desktop and a linux server.

• Free, download from:

• http://winscp.net/eng/download.php

• Login much like putty

Slide 47

WinSCP

• On the left is my Windows PC, on the right
is the HPC cluster.

• I can drag files between the panes.

Slide 48

PSCP – An SCP Client

• Putty comes with an SCP client pscp.exe

– Putty Secure Copy.

• We’ll be using PSCP in the exercises.

• To use it we need to open a Windows
Command Prompt.

• An easy way to do this is to select Run…
from the Start menu and type cmd. Then

click OK.

Slide 49

Windows command prompt

Slide 50

PSCP Syntax

• Transfer file from local machine to the
HPC machine:

pscp <file_name.ext> <user_name>@hpc.uct.ac.za:<dest_dir>

The local file
you want to

copy

Your training account
user name

Where you
want the file to

go on the HPC

machine

Slide 51

Exercise 2(a)
Transferring files from your local machine to
the training HPC machine using PSCP

Command Description

echo %PATH% DOS command to show the value for the
PATH variable

set PATH=<path> DOS command to set the value for the PATH
variable equal to <path>

cd <directory> DOS command to change the directory to
<directory>

Slide 52

PSCP Syntax

• Transfer file from the HPC machine to
your local machine:

pscp <user_name>@hpc.uct.ac.za:<path/to/file_name.txt> .

Your

training

account
user name

The path on the
HPC machine to

the file you want to

copy

Where to put
the file locally.

In this case “.”

for the current
working

directory
Slide 53

Module 4: Submitting jobs

Slide 54

40 minutes

Add a job to the queue

• The scheduler is called SLURM:
• Simple Linux Utility for Resource Management

• To add a job to the SLURM queue, we write a job script. A

job script is simply a shell script (text file).

• The # symbol signifies a comment for the Shell

• However it has some special comments that pass info to
SLURM.

Add a job to the queue

• #SBATCH is a keyword for SLURM and specifies that this
line is for the scheduler. The linux shell will ignore it.

• When we want to queue the job, we pass its filename as a
parameter to sbatch, e.g.
• sbatch <job-script>

• The batch queuing system will return a number that uniquely
identifies the job.

A sample SBATCH job script

#!/bin/bash

#SBATCH --account icts

#SBATCH --partition=ada

#SBATCH --nodes=1 --ntasks=1

#SBATCH --time=10:10:00

By default you start in ~

cd myfolder

pwd

date

hostname

sleep 10

Rules!!!

No space before #SBATCH

No space between # and SBATCH

A sample SBATCH job script

#!/bin/bash

#SBATCH --account icts

#SBATCH --partition=ada

#SBATCH --nodes=1 --ntasks=1

#SBATCH --time=10:10:00

By default you start in ~

cd myfolder

pwd

date

hostname

sleep 10

Output…

cat slurm-235294.out

/home/alewis/myfolder

Tue Aug 6 10:37:52 SAST 2019

srvcnthpc113

You’ve got mail!

Set email address

#SBATCH --mail-user=USERSEMAIL

Send an email when jobs

begins, gets fails or ends

#SBATCH --mail-type=BEGIN,END,FAIL

Example SBATCH job script
#!/bin/sh

This example submission script contains several important directives, please examine it thoroughly

The line below indicates which accounting group to log your job against

#SBATCH --account=$USERSACCOUNT

The line below selects the group of nodes you require

#SBATCH --partition=$USERSPARTITION

The line below means you need 1 worker node and a total of 2 cores

#SBATCH --nodes=1 --ntasks=2

The line below indicates the wall time your job will need, 10 hours for example. NB, mandatory directive!

#SBATCH --time=10:00:00

A sensible name for your job, try to keep it short

#SBATCH --job-name="MyJob"

Modify the lines below for email alerts. Valid type values are NONE, BEGIN, END, FAIL, REQUEUE, ALL

#SBATCH --mail-user=$USERSEMAIL

#SBATCH --mail-type=BEGIN,END,FAIL

The cluster is configured primarily for OpenMPI and PMI. Use srun to launch parallel jobs if your code is

parallel aware. To protect the cluster from code that uses shared memory and grabs all available cores the

cluster has the following environment variable set by default: OMP_NUM_THREADS=1

If you feel compelled to use OMP then uncomment the following line:

export OMP_NUM_THREADS=$SLURM_NTASKS

NB, for more information read https://computing.llnl.gov/linux/slurm/sbatch.html

Use module to gain easy access to software, typing module avail lists all packages.

Example:

module load python/anaconda-python-3.7

Your science stuff goes here...

Exercise 2
Create a script and submit a very simple job

Slide 61

Command Description

#SBATCH #SBATCH is a keyword for SLURM and
specifies that this line is for the scheduler. The
Shell will ignore it

Signifies a comment for the Shell, e.g.
Next line will create a job

sbatch Submit a job to SLURM

squeue List jobs in the queue

cat <filename> Print a file to the terminal (catenate)

less <filename> Like cat, but less at a time

nano <filename> Will open file <filename> in a text file editor

Thank You

